34 int mainQ)

35 {

36 Count counter; // create Count object

37

38 cout << ;

39 counter.print();

40

41 setX(counter,); // set x using a friend function

42 cout << ;
43 counter.print();

44 } // end main

counter.x after instantiation: O
counter.x after call to setX friend function: 8

Fig. 9.22 | Friends can access private members of a class. (Part 3 of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.12 friend Functions and friend
Classes (cont.)

It would normally be appropriate to define function setX as a member
function of class Count.

It would also normally be appropriate to separate the program of Fig. 9.22
Into three files:

A header (e.g., Count. h) containing the Count class definition, which
in turn contains the prototype of friend function setX

An implementation file (e.g., Count. cpp) containing the definitions of
class Count’s member functions and the definition of Triend function
setX

A test program (e.g., T1g09_22 . cpp) with main.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.12 friend Functions and friend
Classes (cont.)

Overloaded friend Functions
« It’s possible to specify overloaded functions as Triends of a class.

« Each function intended to be a friend must be explicitly declared in the
class definition asa friend of the class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Software Engineering Observation 9.12

Even though the prototypes for friend functions appear
in the class definition, friends are not member functions.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Software Engineering Observation 9.13

Member access notions of private, protected and
pub1ic are not relevant to friend declarations, so
friend declarations can be placed anywhere in a class
definition.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

C% Good Programming Practice 9.4

Place all friendship declarations first inside the class
definition’s body and do not precede them with any
access specifier.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.13 Using the this Pointer

« Every object has access to its own address through a pointer
called this (a C++ keyword).

« The th1s pointer is not part of the object itself—i.e., the
memory occupied by the this pointer is not reflected in the
result of a s1zeof operation on the object.

 Rather, the this pointer is passed (by the compiler) as an
Implicit argument to each of the object’s non-static
member functions.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.13 Using the this Pointer (cont.)

Using the this Pointer to Avoid Naming Collisions

« Member functions use the this pointer /implicitly (as we’ve done so far) or
explicitly to reference an object’s data members and other member

functions.
« A common explicituse of the th1is pointer is to avoid naming conflicts

between a class’s data members and member-function parameters (or other
local variables).

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.13 Using the this Pointer (cont.)

e Consider the T1me class’s hour data member and setHour member
function in Figs. 9.4-9.5.

« We could have defined setHour as:
// set hour value
void Time: :setHour(int hour)
{
if (hour >= 0 & & hour < 24)
this->hour + hour; //use this pointer to access data member
else
throw invalid_argument("hour must be 0-23");
} // end function setHour

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

b

Error-Prevention Tip 9.4

To make your code clearer and more maintainable, and
to avoid errors, never hide data members with local

variable names.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.13 Using the this Pointer (cont.)

Type of the this Pointer

The type of the th1s pointer depends on the type of the object and
whether the member function in which th1is is used is declared const.

For example, in a non-const member function of class Emp1oyee, the

this pointer has the type Employee *.Ina const member function,
the this pointer has the type const Employee *.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.13 Using the this Pointer (cont.)

Implicitly and Explicitly Using the this Pointer to Access an Object’s

Data Members
« Figure 9.23 demonstrates the implicit and explicit use of the this pointer to
enable a member function of class Test to print the private data x of a

Test object.
* In the next example and in Chapter 10, we show some substantial and

subtle examples of using this.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

I // Fig. 9.23: fig09_23.cpp

2 // Using the this pointer to refer to object members.
3 #include <iostream>

4 using namespace std;

5

6 class Test

7 {

8 public:

9 explicit Test(int =); // default constructor
10 void print() const;

Il private:

12 int x;

13 1}; // end class Test

14

I5 // constructor
16 Test::Test(int value)

17 : x(value) // initialize x to value
18 {

19 // empty body

20 1} // end constructor Test

21

Fig. 9.23 | using the this pointer to refer to object members. (Part | of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

22 // print x using implicit and explicit this pointers;
23 // the parentheses around *this are required
24 void Test::print() const

25 {

26 // implicitly use the this pointer to access the member x
27 cout << << X;

28

29 // explicitly use the this pointer and the arrow operator
30 // to access the member x

31 cout << << this->Xx;

32

33 // explicitly use the dereferenced this pointer and

34 // the dot operator to access the member x

35 cout << << (*this).x << endl;

36 } // end function print

37

38 int mainQ)

39 {

40 Test testObject(); // instantiate and initialize testObject
41

42 testObject.print();

43 } // end main

Fig. 9.23 | using the this pointer to refer to object members. (Part 2 of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

X = 12
this->x = 12
(*this).x = 12

Fig. 9.23 | using the this pointer to refer to object members. (Part 3 of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

