
©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.12 friend Functions and friend

Classes (cont.)

• It would normally be appropriate to define function setX as a member
function of class Count.

• It would also normally be appropriate to separate the program of Fig. 9.22
into three files:

1. A header (e.g., Count.h) containing the Count class definition, which
in turn contains the prototype of friend function setX

2. An implementation file (e.g., Count.cpp) containing the definitions of
class Count’s member functions and the definition of friend function
setX

3. A test program (e.g., fig09_22.cpp) with main.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.12 friend Functions and friend

Classes (cont.)

Overloaded friend Functions

• It’s possible to specify overloaded functions as friends of a class.

• Each function intended to be a friend must be explicitly declared in the
class definition as a friend of the class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.13 Using the this Pointer

• Every object has access to its own address through a pointer
called this (a C++ keyword).

• The this pointer is not part of the object itself—i.e., the
memory occupied by the this pointer is not reflected in the
result of a sizeof operation on the object.

• Rather, the this pointer is passed (by the compiler) as an
implicit argument to each of the object’s non-static
member functions.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.13 Using the this Pointer (cont.)

Using the this Pointer to Avoid Naming Collisions

• Member functions use the this pointer implicitly (as we’ve done so far) or
explicitly to reference an object’s data members and other member
functions.

• A common explicit use of the this pointer is to avoid naming conflicts
between a class’s data members and member-function parameters (or other
local variables).

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.13 Using the this Pointer (cont.)

• Consider the Time class’s hour data member and setHour member
function in Figs. 9.4–9.5.

• We could have defined setHour as:
// set hour value

void Time::setHour(int hour)

{

 if (hour >= 0 && hour < 24)

 this->hour + hour; //use this pointer to access data member

 else

 throw invalid_argument("hour must be 0-23");

} // end function setHour

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.13 Using the this Pointer (cont.)

Type of the this Pointer

• The type of the this pointer depends on the type of the object and
whether the member function in which this is used is declared const.

• For example, in a non-const member function of class Employee, the
this pointer has the type Employee *. In a const member function,
the this pointer has the type const Employee *.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.13 Using the this Pointer (cont.)

Implicitly and Explicitly Using the this Pointer to Access an Object’s
Data Members

• Figure 9.23 demonstrates the implicit and explicit use of the this pointer to
enable a member function of class Test to print the private data x of a
Test object.

• In the next example and in Chapter 10, we show some substantial and
subtle examples of using this.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

